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 Evolution of phase space probability distributions/H-Theorem 

 

Systems of N real particles occupy domains in 6N-dimensional phase 

space, rather than cells of a CA. Phase space is a product space de-

scribed by continuous 3N spatial  iq , i 1,...,N=  and 3N momentum 

 ip , i 1,...,N=  coordinates. Therefore, the probabilities pi of discrete 

cells i discussed previously 

is replaced by continuous, 

time dependent (t) distribu-

tion functions 

( ) i if q ,p ,t , i 1,...,N=  for 

the N particles. These func-

tions are probability densi-

ties normalized to unity 

when integrated over the 

entire phase space, 

 

                    ( )  3 3
i i id q d f q ,p ,t 1 i 1,...,N =   (1) 

 

Following the same line of arguments as before, the time dependent 

information content of an occupied multi-particle state is contained in 

the Boltzmann H-function (eta-function)  

 

   ( ) ( ) 
N

3 3
i i i i i i

i 1

H(t ) : d q d p f q ,p ,t nf q ,p ,t 0
=

=      (2) 

 

The H function is obviously equivalent to the negative of the information 

S given by the statistical entropy (cf. 

Equ.Error! Reference source not found.). It is negative since the dis-

tribution functions are probability densities.  

 

Based on very general principles, predictions can be made as to the 

spontaneous time evolution of the H function, or the equivalent 

Figure 1: Two possible 2-dim systems of 100 par-

ticles each distributed differently over the availa-

ble space.   
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statistical entropy function S. In the following, the entropy S(t) is ex-

pressed as 

 ( ) ( )( ) ( )B n n n

n 1 n 1

S(t ) H(t ) k p t n p t 0 p t 1
 

= =

= − = −     (3) 

 

in terms of time dependent (normalized) probabilities for discrete sys-

tem states numbered by n.  

 

This time dependence of the entropy function reflects an underlying 

dynamics, a transport process, which tends to redistribute the im-

portance (or population) of the microscopic states and all of its attrib-

utes. The trend is equivalent to an entropy flux or current  

 

 :s

dS
j

dt
=  (4) 

 

If js has a finite magnitude, it defines a direction of increasing or de-
creasing diversity or spread in a priori probabilities.  

 

 The a priori probabilities pn can be regarded as populations of these 

states which can be queried in experimental observations. If these pop-

ulations are time dependent, there have to be microscopic transition 

probabilities wnm connecting any state n and m. The transition probabil-

ities describe the rate of change in the population of state n due to gain 

and loss from and to state m according to a balance “Master Equation,”  

 

 
( )

( ) ( )n
mn m nm n

m Gain Loss

dp t
w p t w p t

dt

 
 

=  −  
  

  (5) 

 

For microscopic, quantal reasons, the transition probabilities are sym-

metric, wnm = wmn, which ensures time reversal invariance (detailed bal-

ance). Obviously, the Master Equation (5) is a classical approximation 

in that it neglects quantal interference terms involving transition ampli-

tudes, rather than probabilities. 
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Now, the time derivative of the entropy function in Equ. (3), the en-

tropy flux (Equ. (4)), can be calculated: 

 

( )
( )( ) ( )

( )
( )n n

B n n n

n 1 n 1

dp t d np tdS(t ) d
k n p t p t ; p t 0

dt dt dt dt

 

= =

     
= − +        

     
   (6) 

 

Evaluating the derivatives one obtains 

 

 

( )
( )( ) ( )

( )
( )

( )
( )( )

( )

n n
B n n

nn 1

n n
B n B

n 1 n

0

dp t dp tdS(t ) 1
k n p t p t

dt dt p t dt

dp t dp tdS(t )
k n p t k

dt dt dt



=



=

=

    
= − + =      

     

 
= − −  

 



 
      (7) 

  

The last term drops out because of the conservation of total probability 

implied by Equ. (6). Now, inserting for dpn/dt the expression given by 
the Master Equation (5), the second row in (7) reads, 

 

 ( ) ( )  ( )( )B mn m n n

n,m 1

dS(t )
k w p t p t n p t

dt



=

= −  −          (8) 

 

Here, use has been made of the symmetry of the transition probabilities 

wmn. Since the two indices n and m run over the same range, this ex-

pression can also be written as, 

 

 ( ) ( )  ( )( )B mn n m m

n,m 1

dS(t )
k w p t p t n p t

dt



=

= − −  (9) 

 
Taking the average of Equs. (8) and (9), a more symmetric expression 

is obtained fro the time rate of change of the entropy function: 

 

 ( ) ( )  ( )( ) ( )( )B
mn n m n m

n,m 1

kdS(t )
w p t p t n p t n p t

dt 2



=

 = − −
   (10) 

 

However, since ( ) 0d n p dp , all terms in the sum are non-negative and 

therefore, 
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s

dS(t ) dH(t )
j 0

dt dt
= = −   (11) 

 

According to this derivation, the entropy S increases and the H func-

tion decreases in time, as long as the transition probabilities are finite, 

0nm mnw w=  . The larger the differences between the populations pi of 

different states are, the higher is the rate of entropy changes. When  

 

 .; 1,.....,np const n =   (12) 

 
the S  (or H) functions no longer change. The system described by such 
function has reached its asymptotic stationary state, also known as 

equilibrium state. This equilibrium state is characterized by maxi-
mum entropy corresponding to equal a priori probabilities pn and 

chaotic dynamics. While for a given theoretic model the expectation 
values of the functions S and H can be calculated exactly, there are also 

higher moments (fluctuations) to consider, since they depend on sto-

chastic parameters, the probabilities pn. 
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1. Gibbs stability criterion for random states 

 

The situation of maximum entropy, where all accessible states are 

uniform and have equal a priori probabilities, is called “equilibrium.” It 

will be shown further below how these information/entropy functions 

change in complex dynamical processes.  

 

All systems where accessible states are not uniformly populated 

are in states of disequilibrium and have statistical entropies less 

than the maximum possible: 

The equilibrium state is therefore defined by the variational condition 

 

 ( ) ( ) ( )i i max i i equ i iS q ,p S q ,p : S S q ,p 0= = → =  (13) 

 
Here,  stands for a variation with respect to the individual probability 

densities. Once a multi-particle system is in such an equilibrium state of 

maximum entropy, there is conceptionally no net driving force that 

would force it out of this state in one direction or another. However, 

such an equilibrium state can be either stable or unstable. Microscopi-

cally, there are always quantal fluctuations in all coordinates. Even sys-

tems presumably at rest show “zero-point fluctuations.” In addition, 

physical particles move even classically from phase space cell to phase 

space cell, changing individual occupation probabilities (pi or ( )i if q ,p ,t ) 

instantaneously away from their respective equilibrium values. The 

magnitude of these fluctuations depend on their origin in classical or 

quantum dynamics. They may vary in size and follow a distribution in 

time or frequency (chance of occurrence). Therefore, the actual entropy 

at a given instant will reflect these fluctuations. 

 

Connecting to discussions of stability in previous sections, one can 

obtain a stability criterion by studying the expansion of the entropy S of 

an actual system state about the equilibrium state ( S 0 = ),  

 

 2 2
equ equ

1 1
S S S S .... S S

2 2
  = + + +  +  (14) 
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From this relation it simply follows that the state of maximum entropy 

is stable, only if fluctuations away from this state reduce the entropy, 

 

 2S 0   (15) 

 

This “Gibbs” stability criterion has to be applied in specific cases to iden-

tify the stable equilibrium. Stable equilibrium states are attractors of 

complex system, as will be demonstrated in later sections. 

 

 


